

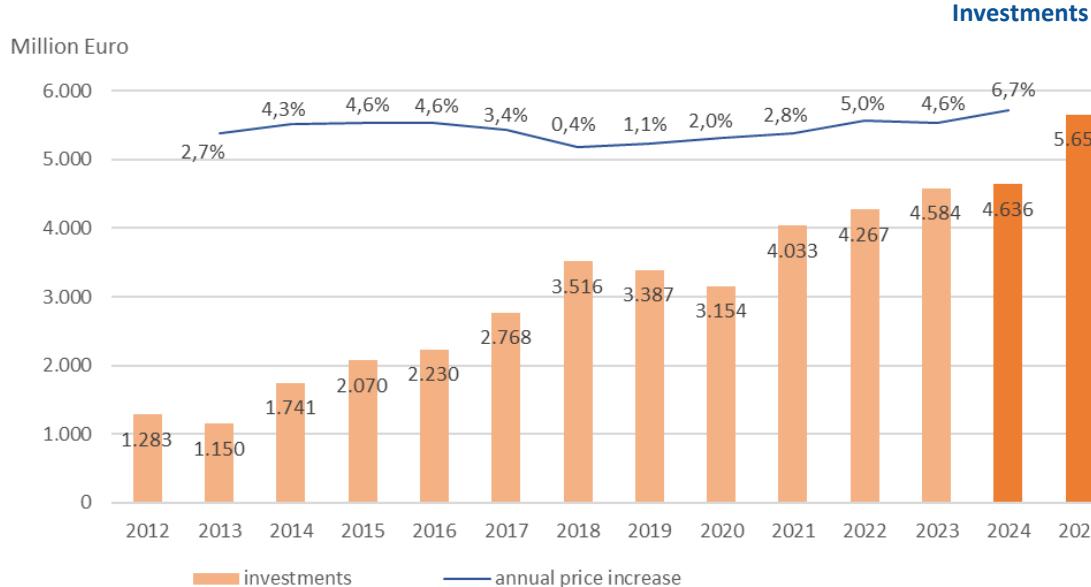
4th DECEMBER 2025

Brussels

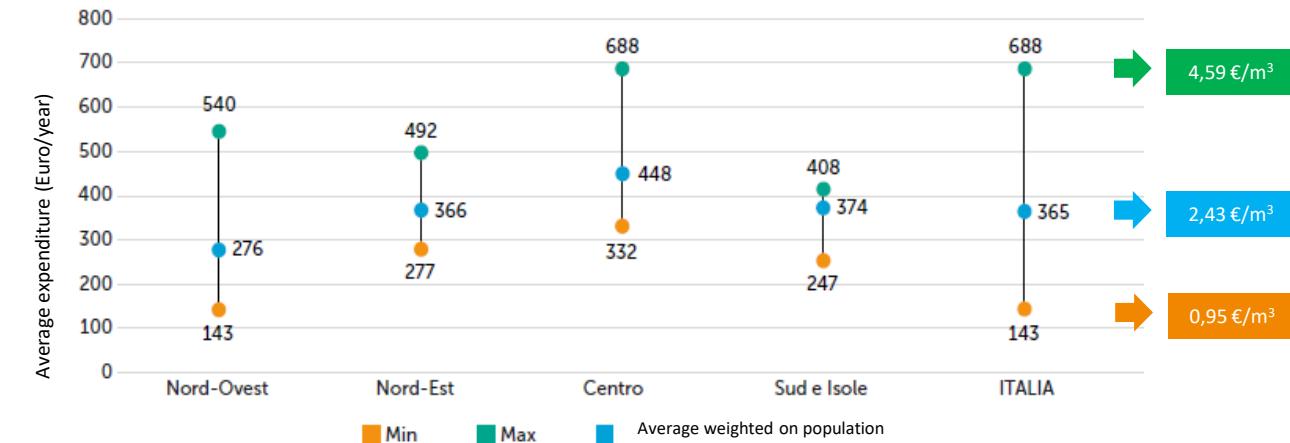
WAREG^o
European Water Regulators

EFRWS

REGULATING FOR RESILIENCE:
SECURING EUROPE'S WATER FUTURE


Funding a Resilient Water Future

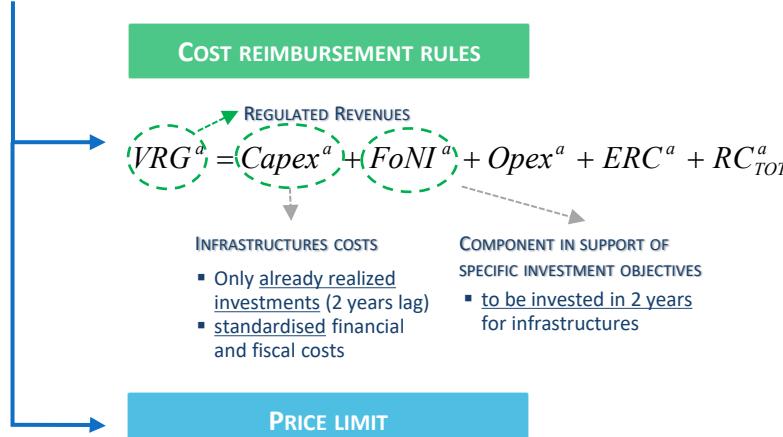
Introductory Remarks


Lorenzo Bardelli
Head of Environment Division,
ARERA

Trends after ARERA regulation in the water sector

Investments trend vs annual price increase

- 2012-2023: projection of the operators' sample to the entire national territory
- since 2024: only sample data (operators serving 47 Million inhabitants)
- 2024 price increase mainly affected by the retail price index adjustment


- Residential users' average expenditure in 2024, for 150 m³ consumption
- Water supply + sewerage + wastewater treatment

- Increased investment in infrastructure modernization and quality improvement (4 times the 2012 level)
- Improvement in the capacity to implement planned investments, with a realization rate rising from 82.9% in 2016 to almost 100% in 2021
- Moderate annual price increase, despite the low initial price

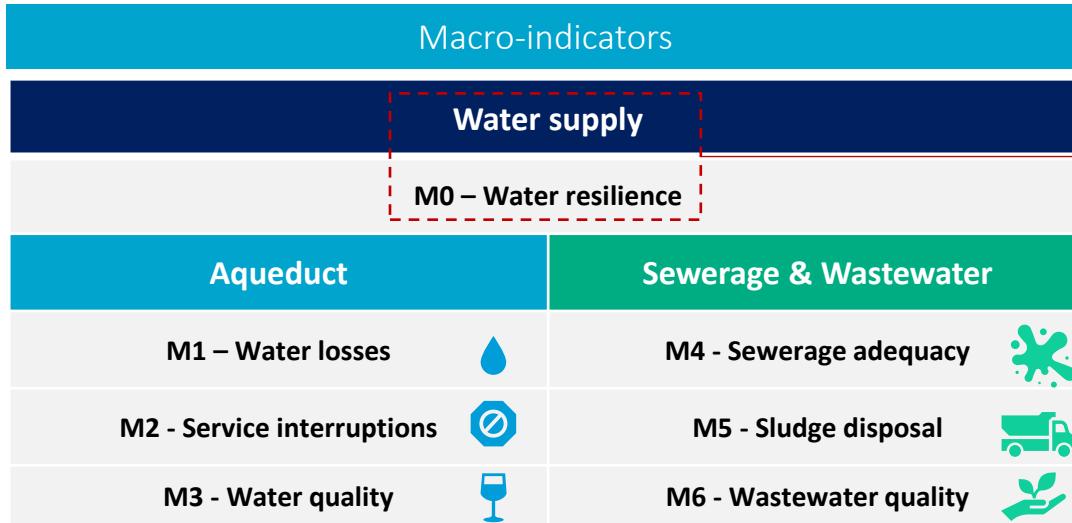
How to finance resilience (input from the Italian water tariff method)

More activities			
More investments		More activities	
$\frac{VRG^{2022}}{pop + 0,25 pop_{flut}} \leq VRG_{PM}$	$\frac{VRG^{2022}}{pop + 0,25 pop_{flut}} > VRG_{PM}$	Aggregations or significant change in technical processes	
$\frac{\sum_{2024}^{2029} (IP_a^{exp} + CFP_a^{exp})}{RAB_{MTI-3}} \leq \omega$	$\frac{\sum_{2024}^{2029} (IP_a^{exp} + CFP_a^{exp})}{RAB_{MTI-3}} > \omega$	Scheme I <u>Ordinary rules</u> Price limit: 6,7%	Scheme II <u>Ordinary rules</u> Price limit: 5,95%
$\frac{\sum_{2024}^{2029} (IP_a^{exp} + CFP_a^{exp})}{RAB_{MTI-3}} > \omega$		Scheme III <u>Additional Opex component</u> Op^{new} Price limit: 7,45%	
$\frac{\sum_{2024}^{2029} (IP_a^{exp} + CFP_a^{exp})}{RAB_{MTI-3}} > \omega$		Scheme IV <u>Additional Capex component FNI</u> and accelerated depreciation Price limit: 9,2%	Scheme V <u>Additional Capex component FNI</u> and accelerated depreciation Price limit: 8,45%
$\frac{\sum_{2024}^{2029} (IP_a^{exp} + CFP_a^{exp})}{RAB_{MTI-3}} > \omega$		Scheme VI <u>Additional Capex component FNI</u> and accelerated depreciation + <u>Additional Opex component</u> Op^{new} Price limit: 9,95%	

The regulatory schemes matrix identifies the operator position in terms of:

PLANNING

All planned interventions, regardless of their funding source (public or tariff) must be included in the Infrastructure and Management Plan (IMP), which constitutes one of the acts of the **specific regulatory scheme** based on which tariff proposal is defined.


EU & National funds

PNRR & REACT
1,9 bn for water losses

PNRR
1 bn for water infrastructures

PNISSI
0,4 bn for water sector security

How to measure and incentivize resilience (input from the Italian water quality regulation)

New measures for regulating technical quality

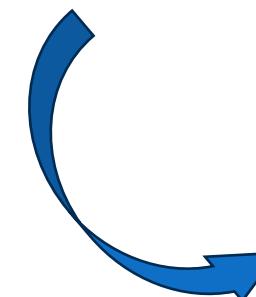
Introduction in 2024 of a new macro-indicator, "M0-Water resilience", aimed at monitoring the **expected effectiveness of the complex supply system based on the satisfaction of water demand forecasts in each area**, also including non civil uses in the assessments.

Water resilience in integrated water service operator perimeter

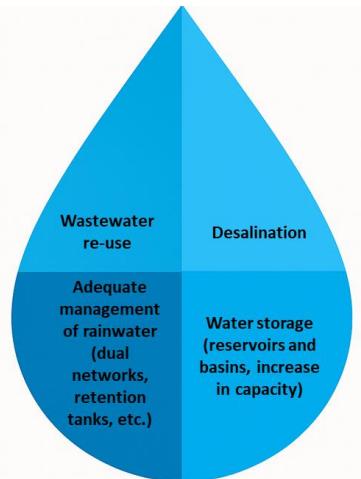
$$M0a = \frac{\sum_{mc} (SII \text{ consumptions, including water losses}) - \sum_{mc} (\text{exported water})}{\sum_{mc} (\text{aquifers} + \text{reservoirs} + \text{surface water bodies} + \text{desalination} + \text{reuse}) + \sum_{mc} (\text{imported water})}$$

Water resilience considering also uses other than civil

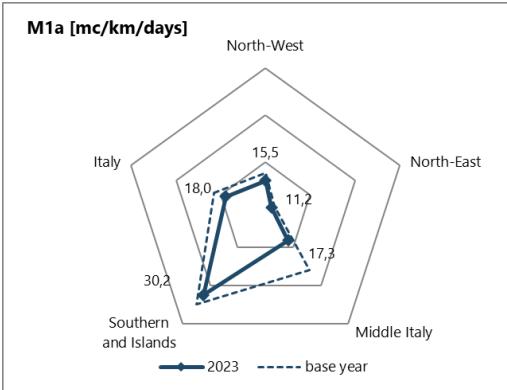
$$M0b = \frac{\sum_{mc} (\text{civil consumptions} + \text{consumi irrigui} + \text{industrial consumptions} + \text{others}) - \sum_{mc} (\text{exported water})}{\sum_{mc} (\text{aquifers} + \text{reservoirs} + \text{surface water bodies} + \text{desalination} + \text{reuse}) + \sum_{mc} (\text{imported water})}$$

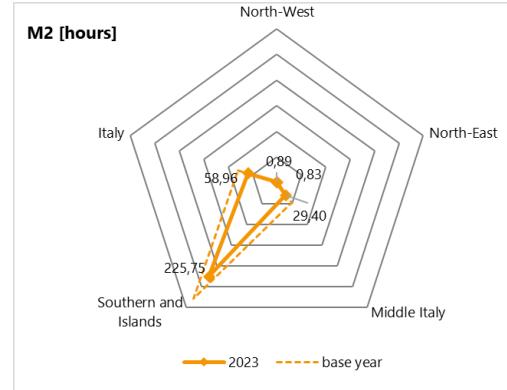

Operator

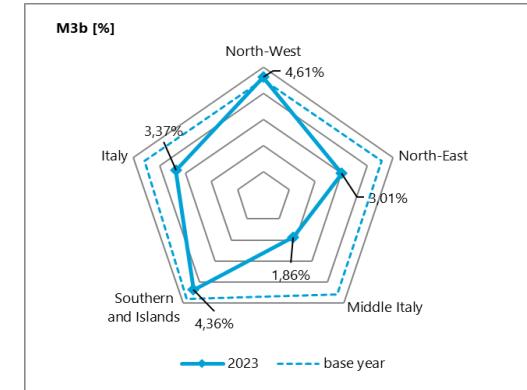
All uses


- 7 macro-indicators whose targets are differentiated according to the operator's state of efficiency (class of indicator):
 - output based
 - technology neutral
- other indicators added to better describe technical condition of integrated water service

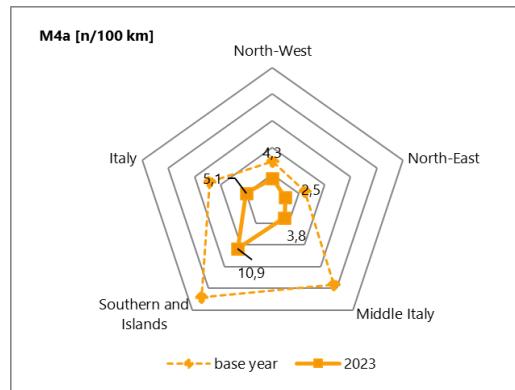
Reward/Penalty mechanism


Objectives	Evaluation levels		
	Basic level	Advanced level	Excellence
<u>Obligation to maintain the state of efficiency (class A)</u>	Stage I (not) maintaining "A class" for each macro-indicator	Stage III the best (worst) 3 operators for each macro-indicator	Stage V the best 3 operators, considering all macro-indicators (almost one in class A)
<u>Obligation to improve efficiency (other classes)</u>	Stage II overcoming (not reaching) the improving efficiency target for each macro-indicator	Stage IV the best 3 improvements (the worst 3 failures) for each macro-indicator	

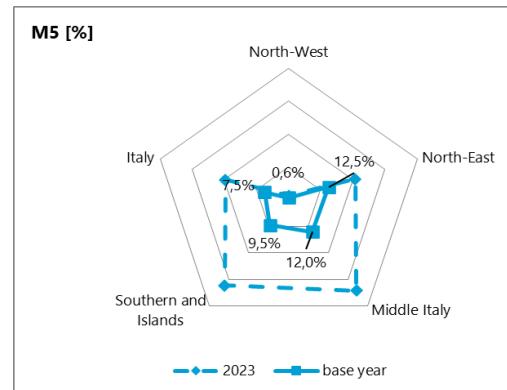

Implementation of measures to achieve the M0 objectives in the operator's IMP, with the provision of works functional to the supply


Evidences from quality regulation

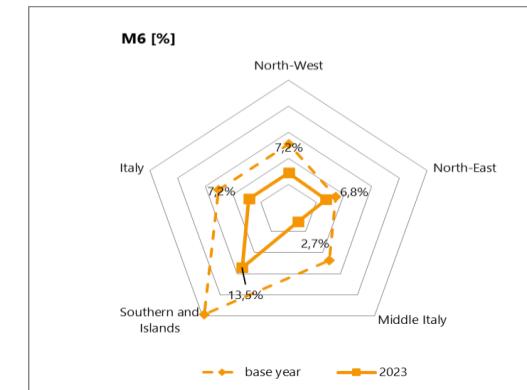
M1 – WATER LOSSES



M2 – SERVICE INTERRUPTIONS



M3 – WATER QUALITY


Constant improvement of the set of indicators - in different terms depending on the geographical area and the individual macro-indicator considered - and a **slight but stable increase in the number of operators for whom the validation of infrastructural and quality data is periodically carried out by EGA**

M4 – SEWERAGE ADEQUACY (FLOODING)

M5 – SLUDGE DISPOSAL

M6 – WASTEWATER QUALITY

Greater attention to compliance with the *criteria* for measuring indicators (by operators) and to data monitoring and validation activities (by EGAs), as highlighted by the increase, in every two-year evaluation periods, of the overall rate of operators admitted to participate in the reward-penalty mechanisms

Positive effects of the technical quality regulation on the constant **improvement of the main performance indicators** of the sector.

European path towards *salubritas* and *securitas*... next 10 years

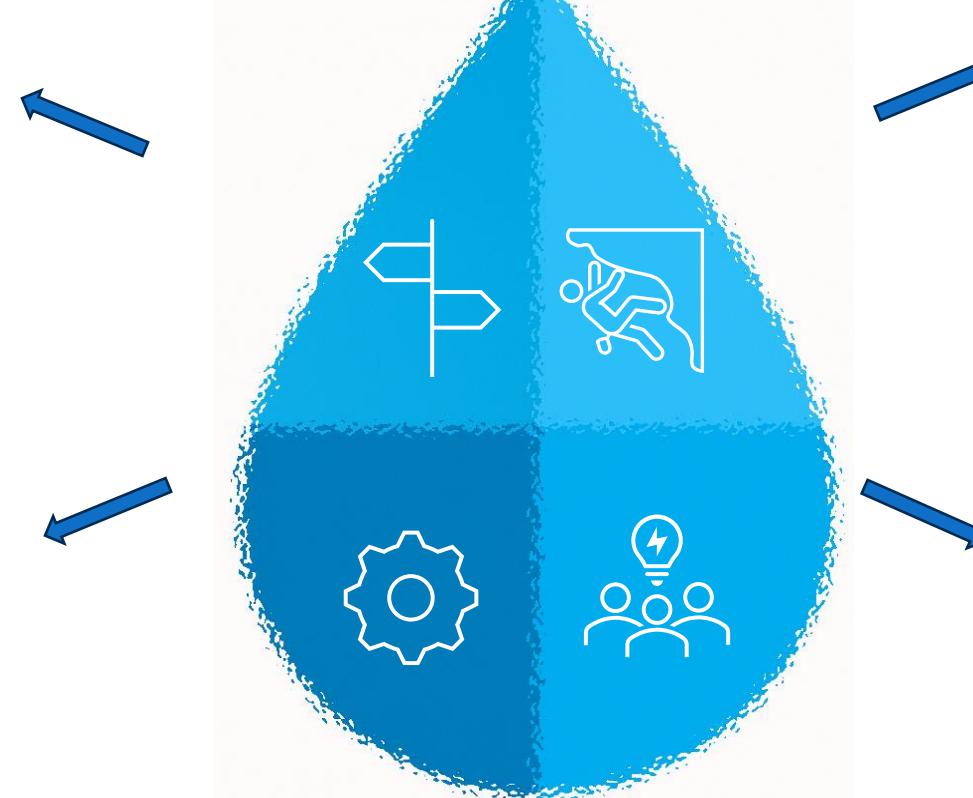
📅 Deadline	📌 Obligation	📘 Regulatory Reference
12 January 2026	Compliance with new parameters for drinking water (e.g. PFAS, Bisphenol A)	Directive (EU) 2020/2184 – Annex I, part B
12 July 2027	National dataset on the risks of water basins for drinking water First risk assessment and risk management of the catchment areas for abstraction	Directive (EU) 2020/2184 – Art. 18(1)(b) Directive (EU) 2020/2184 – Art. 7
31 July 2027	National transposition of the Urban Wastewater Directive	Directive (EU) 2024/3019 – Art. 26
1 August 2027	Full application of the Urban Wastewater Directive; repeal of 91/271/EEC	Directive (EU) 2024/3019 – Art. 32
31 December 2027	“Good status” objective for all water bodies	Directive 2000/60/EC – Art. 4
12 January 2028	Action plan to be presented by each MS based on the average leakage rate determined by Union	Directive (EU) 2020/2184 – Art. 4
31 dicembre 2028	Adoption of EPR schemes for quaternary treatment cost coverage	Directive (EU) 2024/3019 – Art. 9
12 January 2029	Dataset on access to water and risks in internal networks First risk assessment and risk management of the supply system and of the domestic distribution systems	Directive (EU) 2020/2184 – Art. 18(1)(a)(b) Directive (EU) 2020/2184 – Art. 7
31 December 2030	20% renewable energy in wastewater treatment plants $\geq 10,000$ p.e.	Directive (EU) 2024/3019 – Art. 11
31 December 2033	Definition of integrated urban wastewater management plan for drainage areas of agglomerations $\geq 100,000$ p.e. First deadline for tertiary and quaternary treatment provision obligation for wastewater treatment plants with a load $\geq 150,000$ PE and agglomerations $\geq 10,000$ PE	Directive (EU) 2024/3019 – Art. 5 Directive (EU) 2024/3019 – Art. 7 & Art. 8
31 December 2035	Obligation to provide for sewerage network and secondary treatment agglomerations $\geq 1,000$ but $< 2,000$ p.e. 40% renewable energy in wastewater treatment plants $\geq 10,000$ p.e.	Directive (EU) 2024/3019 – Art. 3 & Art. 4 Directive (EU) 2024/3019 – Art. 11

Planning and financing (themes of discussion)

REGULATORY VS NON REGULATORY PERIMETER

To be effective Water resilience initiatives need to involve sectors which usually are excluded from economic regulation (e.g. agricultural irrigation, large dams, urban planning, public green); water tariff can play a role within the comprehensive framework of sustainable financing policies

GOVERNANCE


The current governance models of water services are suitable to attract financing in infrastructures for resilient water services? How can be harmonized industrial/financial capabilities and large-scale public planning?

NEW TASKS FROM EU DIRECTIVES

It is necessary to find resources for interventions to mitigate climate change effects even though other EU objectives to be reached are increasingly challenging (drinking water quality, improved purification, energy neutrality, development of reuse).

INNOVATION AND RESEARCH

How to promote research initiatives for the development of innovative projects to improve resiliency? Funding, research, widespread use of new technologies, new social awareness and more sustainable behavior are all factors that can be relevant in addressing climate change effects: how can be supported effective strategies?

